
Learning various locomotion skills from scratch
with deep reinforcement learning

D.I. Sorokin∗ and D.L. Babaev

Autonomous non-profit organization “Artificial intelligence research institute”,
Moscow, Russia,

∗dmitrii.sorokin@phystech.edu

Abstract. Proficiency in locomotion skills will help robots to navigate
over challenging terrains. This task is hard to solve programmatically
due to the wide variety of terrains and motion patterns. Here we present
a framework to learn an agent capable of solving the task of moving
with desired linear and angular velocity. The agent learns the task in a
curriculum which gradually increases the difficulty of the learned task.
We carefully tune the reward function for the agent. The training process
is performed in a simulator with domain randomization which forces the
agent to learn a robust policy. We tested the proposed framework on the
quadruped robot and achieved competitive results.

Keywords: reinforcement learning, quadrupedal locomotion, curricu-
lum learning

1 Introduction

Robotics is one of the most important applications of reinforcement learning
(RL) in real life. Robots that can adapt to changing environmental conditions
would have a variety of applications from collaborative robotics [1] to autonomous
driving [2]. Reinforcement learning is a promising method to train such robots.

In reinforcement learning, the robot interacts with an environment and learns
a policy that would maximize the total discounted reward obtained during an
episode. This approach is advantageous compared to a hard-coded policy because
an agent can itself figure out an optimal sequence of actions given only a scalar
reward signal. Reward as a function of the current state, the next state, and
action, is often much simpler to design than the optimal sequence of actions.

However, because an agent interacts with the environment through trial and
error, the RL approach has several drawbacks. First of all, the training process
requires lots of data for an agent to learn an optimal policy. Second, the reward
function should be chosen carefully to prevent the agent from “hacking” it or
performing unsafe actions which could damage the robot. Third, if a policy was
trained in simulation, it could not generalize well to a real environment due to
distribution shift.

Here we present a framework that trains the Unitree A1 [3] robot to solve
various locomotion tasks in a simulator. The robot trains in a curriculum which

2 D.I. Sorokin et al.

constantly increases the difficulty of the learned task. We implement a reward
function that encourages an agent to learn a safe and smooth locomotion policy.
We inject noise into robots’ observations in order to learn a more robust policy.

Fig. 1: Unitree A1 robot, “turn counterclockwise” task.

Fig. 2: Unitree A1 robot, “move forward” task.

Fig. 3: Unitree A1 robot, “move backward” task.

2 Related work

The task of legged robot locomotion is a significant challenge in robotics. The
successful policy must be robust to observation noise, be able to move safely,
and require a small amount of data to train on. One of the most promising
approaches to this challenge is based on reinforcement learning. Since not all of
the desired quantities can be achieved at once, different works emphasize various
characteristics. In work [4] authors present a model-based framework that allows

Learning various locomotion skills 3

training of data-efficient policy with only 4.5 minutes of data collected on a
quadruped robot which corresponds to 45000 control steps. In work [5] authors
train an ANYmal robot [6] using proximal policy algorithm (PPO) [7] with
curriculum and domain randomizations, which allowed to deploy the trained
policy on the real robot. In [8] authors used two agents, a teacher and a student
to walk over different terrains such as stairs or hills. The teacher agent leverages
access to privileged information during training while the student agent was
trained without privileged information to mimic the policy of the teacher agent.
In work [9] authors train rapid locomotion skills using curriculum learning for
the MIT Mini Cheetah robot.

The main contribution of our work is as follows: (1) we apply our
framework to a new Unitree A1 robot; (2) we propose a reward function that
encourages smooth and safe locomotion at the target speed.

3 Background

In reinforcement learning interaction between an agent and an environment is
performed sequentially. The agent observes the current state st of the environ-
ment and reacts with an action at. The action causes a transition in the envi-
ronment to the next state st+1. For the caused transition the agent receives a
reward rt. Transitions are assumed to have the Markov property – the future
depends on the past through the present which means that the next state of
the environment must depend only on the current state and the action. Hence,
the behavior policy of the agent should depend only on the current state of the
environment.

To train the behavior policy in our work, we use the PPO algorithm [7]. The
algorithm uses two neural networks: an Actor and a Critic. The Critic network
V approximates the total discounted return:

V → E
τ∼πθ′

[G(si)] = E
τ∼πθ′

[
T∑

t=0

γtrt

]
where πθ - the policy of the agent parameterized by parameters θ; Eτ∼πθ′ –

expectation over trajectories sampled from the current policy πθ′ ; γ - discounting
factor, rt – the reward at the time step t, T – length of the episode. The Actor
network πθ(·|si) minimizes the following clipped objective:

L = E
τ∼πk

[
T∑

t=0

min(ρt(θ)At, clip(ρt(θ), 1− ε, 1 + ε)At)

]
where ρt(θ) = πθ(at|st)/πθ′(at|st) – the likelihood ratio of the action at

w.r.t. the current policy and the policy used to collect the data; At - generalized
advantage estimate [10]; ε - clipping parameter.

The actor’s objective is the core of the PPO algorithm [7]. The interplay, be-
tween the min operator, likelihood clipping, and the sign-changing multiplicative

4 D.I. Sorokin et al.

advantage At enables controllable policy updates which mostly focus on unlikely
advantageous or likely detrimental experience.

4 Our method

We carry out our experiments with the Unitree A1 robot. The robot is shown
in fig. [1-3]. It is a quadruped robot which has 12 degrees of freedom – positions
of the three joints of each of the four legs. We simulate dynamics of the robot
using the Raisim simulator [11]. We train and evaluate our agent in the following
tasks:

– “Move forward”
– “Move forward with target speed”
– “Move backward”
– “Turn clockwise”
– “Turn counterclockwise”

Observation space has 49 dimensions. They are torso height (1), torso roll
and pitch angles (2), joint angles (12), joint velocities (12), previous positions
of joints (12), torso linear (3) and angular (3) velocities, indicators of ground
contact (4). For the move forward with target speed task observation includes
50th dimension – the target speed. We normalize observation using constant
mean and standard deviation.

Actions space is continuous and has 12 dimensions. Actions of our agent
are the next positions of robots’ joints also normalized by constant mean and
standard deviation.

We implement the reward function with 9 terms, summed up with coeffi-
cients listed in table 1:

r = ktorso height·rtorso height+ktorque·rtorque+kjoint speed·rjoint speed+kslip·rslip+
kwork · rwork + kground impact · rground impact + kz acceleration · rz acceleration+

kvelocity · rvelocity + ktransverse and rotation · rtransverse and rotation

To specify the terms we use the following nomenclature: kc - curriculum
factor, h0 – torso height at the beginning of the episode, h – torso height, τ -
joint torque, τp – previous joint torque, ∥∥ - L2 norm, Vt - linear velocity of the
torso, W - angular velocity, ·̂ - desired quantity, Vj - linear velocity of joints, Vft

- tangential velocity of a foot (x, y components), xj linear position of joints, xpj

previous linear positions of joints, Ff – force between ground and foot, Fpf –
force between ground and foot at the previous step, D – direction either 1 or -1,
subscript x,y,z corresponds to one of the components of the subscripted vector.

The first 7 terms in equation (1) do not depend on a task and are used to
motivate the agent to learn a smooth and safe policy. They are defined as follows:

rtorso height = kc · (h− h0)
2

Learning various locomotion skills 5

rtorque = kc · ∥τ∥2

rjoint speed = kc · ∥Vj∥2

rslip = kc · (∥Vft∥2 +W 2
z)

rwork = kc · |τT · (xj − xpj)|

rground impact = kc · ∥Ff − Fpf∥2

rz acceleration = kc · V 2
z

For “move forward” and “move backward” tasks rvelocity and rtransverse and rotation

are defined as follows:

rvelocity = clip(Vx ·D/V̂x, 0, 1)

rtransverse and rotation = kc · (V 2
y +W 2

z)

For “move forward with target speed” task rvelocity and rtransverse and rotation

are defined as follows:

rvelocity = max(1− |Vx/V̂x − 1|, 0)

rtransverse and rotation = kc · (V 2
y +W 2

z)

For “turn clockwise” and “turn counterclockwise” rvelocity andRtransverse and rotation

are defined as follows:

rvelocity = clip(Wz ·D/Ŵz, 0, 1)

rtransverse and rotation = kc · (V 2
x + V 2

y)

To make the learned policy robust we randomize the center of mass of the
robot in range COM ∼ kc · U(−0.0015, 0.0015), where U(A,B) is a uniform
distribution from A to B; friction coefficient kf ∼ 0.875+kc ·U(0.5, 1.25), motor
strength km ∼ 1+kc ·U(0.9, 1.1), apply force of 1000 N (which equals to 8.2g for
12.5kg robot) in a random direction to the robot’s torso with probability equals
to 0.5 at each step and apply random torque of 100 N ·m with probability equals
to 0.05.

We use a curriculum which increases kc from 0 to 1 during the training
process. This lets the agent start with a simple task and gradually adapt to
more demanding ones during training.

We use the PPO algorithm as backbone in our framework. To stabilize the
learning procedure, we interactively adjust the learning rate using kl-divergence
between action distributions from previous and next states:

lrt+1 =

lrt/2 if kl(πθ′ , πθ) > 2 · kltarget
lrt · 2 if kl(πθ′ , πθ) < kltarget/2

lrt otherwise

(1)

6 D.I. Sorokin et al.

Table 1: Reward coefficients

kvelocity 1.25

klateral and rotation -0,9

kheight -1,0

ktorque -0,0005

kjoint speed -0,0015

kslip -0,1

kwork -0,125

kground impact -0,000015

kz acceleration -2,0

Table 2: Parameters of the proximal policy optimization algorithm

clipping parameter 0,2

gamma 0,998

lambda 0,95

value loss coefficient 0,5

entropy coefficient 0,0

learning rate 0,0005

maximum gradient norm 0,5

desired kl divergence 0,01

kltarget is target kl-divergence. Maximal length of an episode was set to 3500
steps which is enough for the agent to reach the bounds of the simulation
bounding box by the end of an episode.

We implement both actor and critic using fully connected neural networks
with two hidden layers with 512 neurons.

5 Results

We train our agent in 100 simulations running in parallel. Neural networks are
updated with backpropagation and Adam optimizer [12] every 128 environment
steps. Total number of updates is 5000. We evaluate the trained agents for 100
episodes and present the evaluation results in table 3 and figure 4. Table 3
shows results for the “move forward”, “move backward”, “turn clockwise” and
“turn counterclockwise” tasks. It can be seen that in “move forward” and “move
backward” tasks agents are more stable and the number of steps is close to the
maximal length of the episode. In the “turn” tasks the agents are less stable
which results in lower achieved return and lower average number of steps. This
can be due to the fact that random forces destabilize the turning agent more
than the agent which moves straight.

Learning various locomotion skills 7

Fig. 4: Evaluation of “Move forward with target speed” task. (a) Achieved speed
Vx as a function of target speed Vtarget. (b) Distance traveled by the end of
episode as a function of target speed Vtarget.

Fig. 4 shows evaluation results for the “move forward with target speed”
task. It can be seen from the Fig. 4a that the agent can move at different speeds
and the achieved speed is close to the target. Distance traveled by the end of the
episode is shown in Fig. 4b. When speed is between 0 m/s and 0.6 m/s distance
grows as the agent goes further. When speed is higher then 0.6 m/s the distance
is almost constant and equals distance to the bounds of the environment.

Table 3: Evaluation of trained model in simulation

Task Move forward Move backward Turn clockwise Turn counterclockwise

Total return 529 ± 124 508 ± 98 85 ± 219 165 ± 155

Number of steps 3263 ± 633 3136 ± 545 2057 ± 1208 2095 ± 1325

Overall, the results show that the Unitree A1 robot can be trained with
reinforcement learning and the trained model can achieve good performance.

6 Conclusion

In the present work we developed a framework which can train a Unitree A1
robot to solve the various locomotion tasks. Our designed reward function en-
forces the agent to learn a smooth policy. Test results show that the trained
agent can perform well in a simulated environment.

In the future work we are going to combine all the models into a single agent
which can move with arbitrary linear and angular velocities and evaluate the
combined model on a physical robot. Afterwards the trained policy can be used

8 D.I. Sorokin et al.

as a first level of hierarchical policy where the second policy would decide where
to go and send commands to the first policy. Such agents can learn to solve
sophisticated tasks such as moving cargo to a destination.

References

1. S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep vi-
suomotor policies,” The Journal of Machine Learning Research, vol. 17, no. 1,
pp. 1334–1373, 2016.

2. B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and
P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

3. https://www.unitree.com/products/a1/.
4. Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani, “Data effi-

cient reinforcement learning for legged robots,” in Conference on Robot Learning,
pp. 1–10, PMLR, 2020.

5. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and
M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science
Robotics, vol. 4, Jan. 2019.

6. M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo,
K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and
M. Hoepflinger, “Anymal - a highly mobile and dynamic quadrupedal robot,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 38–44, 2016.

7. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

8. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science Robotics, vol. 5, no. 47,
p. eabc5986, 2020.

9. G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal, “Rapid locomotion
via reinforcement learning,” arXiv preprint arXiv:2205.02824, 2022.

10. J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” arXiv preprint
arXiv:1506.02438, 2015.

11. J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for solving
contact dynamics,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 895–
902, 2018.

12. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

